課程目錄:Natural Language Processing - AI/Robotics培訓
4401 人關注
(78637/99817)
課程大綱:

    Natural Language Processing - AI/Robotics培訓

 

 

 

Detailed training outline

Introduction to NLP
Understanding NLP
NLP Frameworks
Commercial applications of NLP
Scraping data from the web
Working with various APIs to retrieve text data
Working and storing text corpora saving content and relevant metadata
Advantages of using Python and NLTK crash course
Practical Understanding of a Corpus and Dataset
Why do we need a corpus?
Corpus Analysis
Types of data attributes
Different file formats for corpora
Preparing a dataset for NLP applications
Understanding the Structure of a Sentences
Components of NLP
Natural language understanding
Morphological analysis - stem, word, token, speech tags
Syntactic analysis
Semantic analysis
Handling ambigiuty
Text data preprocessing
Corpus- raw text
Sentence tokenization
Stemming for raw text
Lemmization of raw text
Stop word removal
Corpus-raw sentences
Word tokenization
Word lemmatization
Working with Term-Document/Document-Term matrices
Text tokenization into n-grams and sentences
Practical and customized preprocessing
Analyzing Text data
Basic feature of NLP
Parsers and parsing
POS tagging and taggers
Name entity recognition
N-grams
Bag of words
Statistical features of NLP
Concepts of Linear algebra for NLP
Probabilistic theory for NLP
TF-IDF
Vectorization
Encoders and Decoders
Normalization
Probabilistic Models
Advanced feature engineering and NLP
Basics of word2vec
Components of word2vec model
Logic of the word2vec model
Extension of the word2vec concept
Application of word2vec model
Case study: Application of bag of words: automatic text summarization using simplified and true Luhn's algorithms
Document Clustering, Classification and Topic Modeling
Document clustering and pattern mining (hierarchical clustering, k-means, clustering, etc.)
Comparing and classifying documents using TFIDF, Jaccard and cosine distance measures
Document classifcication using Na?ve Bayes and Maximum Entropy
Identifying Important Text Elements
Reducing dimensionality: Principal Component Analysis, Singular Value Decomposition non-negative matrix factorization
Topic modeling and information retrieval using Latent Semantic Analysis
Entity Extraction, Sentiment Analysis and Advanced Topic Modeling
Positive vs. negative: degree of sentiment
Item Response Theory
Part of speech tagging and its application: finding people, places and organizations mentioned in text
Advanced topic modeling: Latent Dirichlet Allocation
Case studies
Mining unstructured user reviews
Sentiment classification and visualization of Product Review Data
Mining search logs for usage patterns
Text classification
Topic modelling

主站蜘蛛池模板: 色欲综合久久中文字幕网| 欧美成人综合视频| 国产综合亚洲专区在线| 一本色道久久综合狠狠躁篇| 亚洲五月激情综合图片区| 精品综合久久久久久98| 久久综合国产乱子伦精品免费| 俺来也俺去啦久久综合网| 久久婷婷五月综合97色| 伊人久久大香线焦综合四虎| 婷婷国产天堂久久综合五月 | 狠狠色综合色综合网络| 亚洲欧美日韩综合二区三区| 亚洲欧美综合一区二区三区| 亚洲综合图色40p| 亚洲色婷婷综合久久| 亚洲精品欧美综合在线| 婷婷综合缴情亚洲狠狠图片| 国产精品天天影视久久综合网| 亚洲综合色婷婷七月丁香| 精品福利一区二区三区精品国产第一国产综合精品| 亚洲色图综合网| 国产成人精品综合网站| 狠狠色综合日日| 亚洲欧美综合区自拍另类| 97久久综合精品久久久综合| 天天综合天天做天天综合| 久久综合亚洲色一区二区三区| 日本一道综合色视频| 婷婷色中文字幕综合在线| 久久本道久久综合伊人| 丁香五月亚洲综合深深爱| 伊色综合久久之综合久久| 狠狠久久综合伊人不卡| 狠狠久久综合| 久久综合久久自在自线精品自| 五月丁香六月综合欧美在线| 亚洲综合色区在线观看| 亚洲综合精品网站在线观看| 亚洲国产成人精品无码久久久久久综合| 久久婷婷五月综合97色一本一本|