課程目錄:R語言機器學習學術應用培訓
4401 人關注
(78637/99817)
課程大綱:

          R語言機器學習學術應用培訓

 

 

 

R語言機器學習學術應用
基礎
Theory: Features of time series data and forecasting basics

R Lab: time series objects (libraries of timeSeries, xts, & mFilters)

中級
Statistical Learning (SL):

(0.5 Hour) One-step forecasting: one-step ahead model fit

(0.5 Hour) Multi-step forecasting: recursive and direct methods

(6 Hours) Linear models: ARIMAs, ETS, BATS, GAMS, Bagged; 案例實做與寫作范例

(5 hours) Nonlinear models: Neural Network, Smooth Transition, and AAR; 案例實做與寫作范例

R Lab: libraries of forecast, tyDyn, vars, and MSVAR.

Research Issues: unemployment forecasting, predictability of exchange rates and asset returns.

高級
Machine Learning (ML):

(3 Hours) Tree models and SVM (Support Vector Machine)

(6 Hours) Automatic ML for forecasting time series; 案例實做與寫作范例,涵蓋自動化演算6個機器學習方法:

(1) DRF (This includes both the Random Forest and Extremely Randomized Trees (XRT) models.)

(2) GLM

(3) XGBoost (XGBoost GBM)

(4) GBM (gradient boost machine)

(5) DeepLearning (Fully-connected multi-layer artificial neural network, not CNN/RNN LSTM)

(6) StackedEnsemble.

(6 Hours) Econometric machine learning- Causality by ML prediction; 案例實做與寫作范例

(3 Hours) Financial machine learning- Portfolio committees introduced; 案例實做與寫作范例

R Lab: libraries of h2o, kera, tensorflow.

Research issues: Granger causality, volatility forecasting, portfolio selection,

economic fundamentals of exchange rates

主站蜘蛛池模板: 欧美日韩综合一区在线观看| 亚洲香蕉网久久综合影视| 久久综合精品国产二区无码| 一97日本道伊人久久综合影院 | 国产美女亚洲精品久久久综合| 亚洲色婷婷综合开心网| 婷婷综合久久中文字幕蜜桃三电影| 国产综合精品久久亚洲 | 综合网在线观看| 狠狠色婷婷综合天天久久丁香| 国产综合第一页| 精品国产综合区久久久久久| 日韩欧美在线综合网另类| 亚洲综合精品网站在线观看| 日韩亚洲国产综合高清| 国产精品天干天干综合网| 久久99国产综合精品女同| 热综合一本伊人久久精品| 久久综合五月丁香久久激情| 色综合.com| 久久综合伊人77777| 国产亚洲综合网曝门系列| 国产成人综合亚洲AV第一页| 一本一道久久精品综合| 97se亚洲国产综合自在线| 久久狠狠爱亚洲综合影院| 亚洲一区综合在线播放| 亚洲综合无码AV一区二区 | 狠狠色丁香久久综合婷婷| 久久精品综合一区二区三区| 国产欧美日韩综合精品一区二区| 狠狠色综合网站久久久久久久| 欧美一区二区三区久久综合 | 色婷婷久久综合中文久久一本| 婷婷成人丁香五月综合激情| 亚洲图片综合区| 97久久国产综合精品女不卡 | 欲色天天综合网| 亚洲国产综合无码一区二区二三区| 色婷婷久久综合中文久久一本| 精品国产综合区久久久久久|