課程目錄:Machine Learning – Data science培訓
4401 人關注
(78637/99817)
課程大綱:

    Machine Learning – Data science培訓

 

 

 

Machine Learning introduction
Types of Machine learning – supervised vs unsupervised learning
From Statistical learning to Machine learning
The Data Mining workflow:
Business understanding
Data Understanding
Data preparation
Modelling
Evaluation
Deployment
Machine learning algorithms
Choosing appropriate algorithm to the problem
Overfitting and bias-variance tradeoff in ML
ML libraries and programming languages
Why use a programming language
Choosing between R and Python
Python crash course
Python resources
Python Libraries for Machine learning
Jupyter notebooks and interactive coding
Testing ML algorithms
Generalization and overfitting
Avoiding overfitting
Holdout method
Cross-Validation
Bootstrapping
Evaluating numerical predictions
Measures of accuracy: ME, MSE, RMSE, MAPE
Parameter and prediction stability
Evaluating classification algorithms
Accuracy and its problems
The confusion matrix
Unbalanced classes problem
Visualizing model performance
Profit curve
ROC curve
Lift curve
Model selection
Model tuning – grid search strategies
Examples in Python
Data preparation
Data import and storage
Understand the data – basic explorations
Data manipulations with pandas library
Data transformations – Data wrangling
Exploratory analysis
Missing observations – detection and solutions
Outliers – detection and strategies
Standarization, normalization, binarization
Qualitative data recoding
Examples in Python
Classification
Binary vs multiclass classification
Classification via mathematical functions
Linear discriminant functions
Quadratic discriminant functions
Logistic regression and probability approach
k-nearest neighbors
Na?ve Bayes
Decision trees
CART
Bagging
Random Forests
Boosting
Xgboost
Support Vector Machines and kernels
Maximal Margin Classifier
Support Vector Machine
Ensemble learning
Examples in Python
Regression and numerical prediction
Least squares estimation
Variables selection techniques
Regularization and stability- L1, L2
Nonlinearities and generalized least squares
Polynomial regression
Regression splines
Regression trees
Examples in Python
Unsupervised learning
Clustering
Centroid-based clustering – k-means, k-medoids, PAM, CLARA
Hierarchical clustering – Diana, Agnes
Model-based clustering - EM
Self organising maps
Clusters evaluation and assessment
Dimensionality reduction
Principal component analysis and factor analysis
Singular value decomposition
Multidimensional Scaling
Examples in Python
Text mining
Preprocessing data
The bag-of-words model
Stemming and lemmization
Analyzing word frequencies
Sentiment analysis
Creating word clouds
Examples in Python
Recommendations engines and collaborative filtering
Recommendation data
User-based collaborative filtering
Item-based collaborative filtering
Examples in Python
Association pattern mining
Frequent itemsets algorithm
Market basket analysis
Examples in Python
Outlier Analysis
Extreme value analysis
Distance-based outlier detection
Density-based methods
High-dimensional outlier detection
Examples in Python
Machine Learning case study
Business problem understanding
Data preprocessing
Algorithm selection and tuning
Evaluation of findings
Deployment

主站蜘蛛池模板: 欧美综合视频在线| 丁香五月天综合缴情网| 成人伊人亚洲人综合网站222| 久久综合精品国产一区二区三区| 亚洲欧美综合区自拍另类| 一本色道久久88综合日韩精品 | 色老头综合免费视频| 五月婷婷综合在线| 99久久婷婷国产综合亚洲| 综合久久一区二区三区 | 久久久久综合国产欧美一区二区 | 狠狠色噜噜狠狠狠狠狠色综合久久| 色综合欧美在线视频区| 青青草原综合久久大伊人| 伊人久久综合成人网| 2021精品国产综合久久| 久久综合久久综合九色| 天天做天天爱天天爽综合网| 亚洲国产综合人成综合网站| 欧美日韩一区二区综合在线| 久久综合国产乱子伦精品免费 | 久久综合亚洲色一区二区三区| 欧美综合缴情五月丁香六月婷| 国产亚洲欧美日韩综合综合二区| 国产亚洲综合一区柠檬导航| 久久婷婷五月综合成人D啪| 欧美激情中文字幕综合一区| 伊伊人成亚洲综合人网7777 | 日日AV色欲香天天综合网| 亚洲综合伊人久久大杳蕉| 美国十次狠狠色综合| 狠狠做五月深爱婷婷天天综合| 激情综合色五月丁香六月欧美| 五月丁香六月综合欧美在线 | 欧美日韩亚洲综合一区二区三区| 色噜噜狠狠色综合网| 亚洲色图综合在线| 成人精品综合免费视频| 成人综合激情| 久久久久久综合网天天| 日本一道综合色视频|