課程目錄:Machine Learning – Data science培訓
4401 人關注
(78637/99817)
課程大綱:

    Machine Learning – Data science培訓

 

 

 

Machine Learning introduction
Types of Machine learning – supervised vs unsupervised learning
From Statistical learning to Machine learning
The Data Mining workflow:
Business understanding
Data Understanding
Data preparation
Modelling
Evaluation
Deployment
Machine learning algorithms
Choosing appropriate algorithm to the problem
Overfitting and bias-variance tradeoff in ML
ML libraries and programming languages
Why use a programming language
Choosing between R and Python
Python crash course
Python resources
Python Libraries for Machine learning
Jupyter notebooks and interactive coding
Testing ML algorithms
Generalization and overfitting
Avoiding overfitting
Holdout method
Cross-Validation
Bootstrapping
Evaluating numerical predictions
Measures of accuracy: ME, MSE, RMSE, MAPE
Parameter and prediction stability
Evaluating classification algorithms
Accuracy and its problems
The confusion matrix
Unbalanced classes problem
Visualizing model performance
Profit curve
ROC curve
Lift curve
Model selection
Model tuning – grid search strategies
Examples in Python
Data preparation
Data import and storage
Understand the data – basic explorations
Data manipulations with pandas library
Data transformations – Data wrangling
Exploratory analysis
Missing observations – detection and solutions
Outliers – detection and strategies
Standarization, normalization, binarization
Qualitative data recoding
Examples in Python
Classification
Binary vs multiclass classification
Classification via mathematical functions
Linear discriminant functions
Quadratic discriminant functions
Logistic regression and probability approach
k-nearest neighbors
Na?ve Bayes
Decision trees
CART
Bagging
Random Forests
Boosting
Xgboost
Support Vector Machines and kernels
Maximal Margin Classifier
Support Vector Machine
Ensemble learning
Examples in Python
Regression and numerical prediction
Least squares estimation
Variables selection techniques
Regularization and stability- L1, L2
Nonlinearities and generalized least squares
Polynomial regression
Regression splines
Regression trees
Examples in Python
Unsupervised learning
Clustering
Centroid-based clustering – k-means, k-medoids, PAM, CLARA
Hierarchical clustering – Diana, Agnes
Model-based clustering - EM
Self organising maps
Clusters evaluation and assessment
Dimensionality reduction
Principal component analysis and factor analysis
Singular value decomposition
Multidimensional Scaling
Examples in Python
Text mining
Preprocessing data
The bag-of-words model
Stemming and lemmization
Analyzing word frequencies
Sentiment analysis
Creating word clouds
Examples in Python
Recommendations engines and collaborative filtering
Recommendation data
User-based collaborative filtering
Item-based collaborative filtering
Examples in Python
Association pattern mining
Frequent itemsets algorithm
Market basket analysis
Examples in Python
Outlier Analysis
Extreme value analysis
Distance-based outlier detection
Density-based methods
High-dimensional outlier detection
Examples in Python
Machine Learning case study
Business problem understanding
Data preprocessing
Algorithm selection and tuning
Evaluation of findings
Deployment

主站蜘蛛池模板: 国产成+人+综合+亚洲专| 一本色道久久综合狠狠躁篇 | 国产在线五月综合婷婷| 亚洲AV人无码综合在线观看| 亚洲国产免费综合| 亚洲综合成人网| 亚洲欧美国产日产综合不卡| 久久婷婷色综合一区二区| 91精品国产综合久久精品| 久久综合视频网| 国产成人综合久久精品红| 97se亚洲国产综合自在线| 久久婷婷五月综合成人D啪| 亚洲伊人久久综合中文成人网| 亚洲综合一区二区国产精品| 精品综合久久久久久98| 色欲天天天综合网| 亚洲国产日韩成人综合天堂| 久久天堂AV综合合色蜜桃网| 久久99国产综合精品女同| 色综合久久中文字幕无码| 青青草原综合久久大伊人精品| HEYZO无码综合国产精品| 狠狠人妻久久久久久综合| 91成人亚洲综合欧美日韩 | 久久亚洲精品人成综合网| 狠狠色丁香久久婷婷综合蜜芽五月| 色欲天天婬色婬香视频综合网| 一本色道久久88—综合亚洲精品| 色狠狠成人综合色| 91精品欧美综合在线观看| 亚洲综合日韩久久成人AV| 五月六月综合欧美网站| 国产成人综合久久精品红| 亚洲成a人v欧美综合天堂| 色综合欧美在线视频区| 国产综合色在线视频区| 激情综合网五月| 青青草原综合久久| 欧美综合缴情五月丁香六月婷| 亚洲综合最新无码专区|