課程目錄: 人工智能原理培訓
4401 人關注
(78637/99817)
課程大綱:

          人工智能原理培訓

 

 

 

Part I. Basics: Chapter 1. Introduction

1.1 Overview of Artificial Intelligence

1.2 Foundations of Artificial Intelligence

1.3 History of Artificial Intelligence

1.4 The State of The Art

1.5 Summary

Quizzes for Chapter 1

Part I. Basics: Chapter 2. Intelligent Agent

2.1 Approaches for Artificial Intelligence

2.2 Rational Agents

2.3 Task Environments

2.4 Intelligent Agent Structure

2.5 Category of Intelligent Agents

2.6 Summary

Quizzes for Chapter 2

Part II. Searching: Chapter 3. Solving Problems by Search

3.1 Problem Solving Agents

3.2 Example Problems

3.3 Searching for Solutions

3.4 Uninformed Search Strategies

3.5 Informed Search Strategies

3.6 Heuristic Functions

3.7 Summary

Quizzes for Chapter 3

Part II. Searching: Chapter 4. Local Search and Swarm Intelligence

4.1 Overview

4.2 Local Search Algorithms

4.3 Optimization and Evolutionary Algorithms

4.4 Swarm Intelligence and Optimization

4.5 Summary

Quizzes for Chapter 4

Part II. Searching: Chapter 5. Adversarial Search

5.1 Games

5.2 Optimal Decisions in Games

5.3 Alpha-Beta Pruning

5.4 Imperfect Real-time Decisions

5.5 Stochastic Games

5.6 Monte-Carlo Methods

5.7 Summary

Quizzes for Chapter 5

Part II. Searching: Chapter 6. Constraint Satisfaction Problem

6.1 Constraint Satisfaction Problems (CSPs)

6.2 Constraint Propagation: Inference in CSPs

6.3 Backtracking Search for CSPs

6.4 Local Search for CSPs

6.5 The Structure of Problems

6.6 Summary

Quizzes for Chapter 6

Part III. Reasoning: Chapter 7. Reasoning by Knowledge

7.1 Overview

7.2 Knowledge Representation

7.3 Representation using Logic

7.4 Ontological Engineering

7.5 Bayesian Networks

7.6 Summary

Quizzes for Chapter 7

Part IV. Planning: Chapter 8. Classic and Real-world Planning

8.1 Planning Problems

8.2 Classic Planning

8.3 Planning and Scheduling

8.4 Real-World Planning

8.5 Decision-theoretic Planning

8.6 Summary

Quizzes for Chapter 8

Part V. Learning: Chapter 9. Perspectives about Machine Leaning

9.1 What is Machine Learning

9.2 History of Machine Learning

9.3 Why Different Perspectives

9.4 Three Perspectives on Machine Learning

9.5 Applications and Terminologies

9.6 Summary

Quizzes for Chapter 9

Part V. Learning: Chapter 10. Tasks in Machine Learning

10.1 Classification

10.2 Regression

10.3 Clustering

10.4 Ranking

10.5 Dimensionality Reduction

10.6 Summary

Quizzes for Chapter 10

Part V. Learning: Chapter 11. Paradigms in Machine Learning

11.1 Supervised Learning Paradigm

11.2 Unsupervised Learning Paradigm

11.3 Reinforcement Learning Paradigm

11.4 Other Learning Paradigms

11.5 Summary

Quizzes for Chapter 11

Part V. Learning: Chapter 12. Models in Machine Learning

12.1 Probabilistic Models

12.2 Geometric Models

12.3 Logical Models

12.4 Networked Models

12.5 Summary

Quizzes for Chapter 12


主站蜘蛛池模板: 亚洲综合国产精品| 亚洲人成依人成综合网| 色噜噜狠狠色综合久| 色偷偷91久久综合噜噜噜噜| 国产成人综合久久综合| 婷婷综合久久中文字幕| 国产亚洲综合网曝门系列| 亚洲狠狠婷婷综合久久蜜芽| 婷婷五月六月激情综合色中文字幕| 亚洲色欲久久久综合网| 国产在线五月综合婷婷| 婷婷五月综合缴情在线视频| 国内偷自视频区视频综合| 欧美日韩一区二区综合| 观看 国产综合久久久久鬼色 欧美 亚洲 一区二区 | 亚洲综合精品香蕉久久网97| 狠狠色成人综合网图片区 | 99久久婷婷国产综合亚洲| 国产精品无码久久综合网 | 曰韩人妻无码一区二区三区综合部| 久久综合九色欧美综合狠狠| 国产日韩欧美综合| 亚洲五月综合缴情在线观看| 亚洲人成综合网站7777香蕉| 亚洲熟女乱综合一区二区| 久久久久久青草大香综合精品| 亚洲第一综合色| 在线亚洲97se亚洲综合在线| 99久久婷婷国产综合精品草原| 偷自拍视频区综合视频区| 91精品国产综合久久香蕉| 久久综合亚洲色一区二区三区| 欧美色综合天天综合高清网| 色婷婷综合久久久久中文字幕 | 国产成人精品久久综合| 国产成人麻豆亚洲综合无码精品| 色综合久久久久久久久五月| 日日狠狠久久偷偷色综合96蜜桃 | 狠狠色丁香久久婷婷综合_中| 天天色天天综合| 亚洲国产成人久久综合一区77|