課程目錄: 人工智能原理培訓
4401 人關注
(78637/99817)
課程大綱:

          人工智能原理培訓

 

 

 

Part I. Basics: Chapter 1. Introduction

1.1 Overview of Artificial Intelligence

1.2 Foundations of Artificial Intelligence

1.3 History of Artificial Intelligence

1.4 The State of The Art

1.5 Summary

Quizzes for Chapter 1

Part I. Basics: Chapter 2. Intelligent Agent

2.1 Approaches for Artificial Intelligence

2.2 Rational Agents

2.3 Task Environments

2.4 Intelligent Agent Structure

2.5 Category of Intelligent Agents

2.6 Summary

Quizzes for Chapter 2

Part II. Searching: Chapter 3. Solving Problems by Search

3.1 Problem Solving Agents

3.2 Example Problems

3.3 Searching for Solutions

3.4 Uninformed Search Strategies

3.5 Informed Search Strategies

3.6 Heuristic Functions

3.7 Summary

Quizzes for Chapter 3

Part II. Searching: Chapter 4. Local Search and Swarm Intelligence

4.1 Overview

4.2 Local Search Algorithms

4.3 Optimization and Evolutionary Algorithms

4.4 Swarm Intelligence and Optimization

4.5 Summary

Quizzes for Chapter 4

Part II. Searching: Chapter 5. Adversarial Search

5.1 Games

5.2 Optimal Decisions in Games

5.3 Alpha-Beta Pruning

5.4 Imperfect Real-time Decisions

5.5 Stochastic Games

5.6 Monte-Carlo Methods

5.7 Summary

Quizzes for Chapter 5

Part II. Searching: Chapter 6. Constraint Satisfaction Problem

6.1 Constraint Satisfaction Problems (CSPs)

6.2 Constraint Propagation: Inference in CSPs

6.3 Backtracking Search for CSPs

6.4 Local Search for CSPs

6.5 The Structure of Problems

6.6 Summary

Quizzes for Chapter 6

Part III. Reasoning: Chapter 7. Reasoning by Knowledge

7.1 Overview

7.2 Knowledge Representation

7.3 Representation using Logic

7.4 Ontological Engineering

7.5 Bayesian Networks

7.6 Summary

Quizzes for Chapter 7

Part IV. Planning: Chapter 8. Classic and Real-world Planning

8.1 Planning Problems

8.2 Classic Planning

8.3 Planning and Scheduling

8.4 Real-World Planning

8.5 Decision-theoretic Planning

8.6 Summary

Quizzes for Chapter 8

Part V. Learning: Chapter 9. Perspectives about Machine Leaning

9.1 What is Machine Learning

9.2 History of Machine Learning

9.3 Why Different Perspectives

9.4 Three Perspectives on Machine Learning

9.5 Applications and Terminologies

9.6 Summary

Quizzes for Chapter 9

Part V. Learning: Chapter 10. Tasks in Machine Learning

10.1 Classification

10.2 Regression

10.3 Clustering

10.4 Ranking

10.5 Dimensionality Reduction

10.6 Summary

Quizzes for Chapter 10

Part V. Learning: Chapter 11. Paradigms in Machine Learning

11.1 Supervised Learning Paradigm

11.2 Unsupervised Learning Paradigm

11.3 Reinforcement Learning Paradigm

11.4 Other Learning Paradigms

11.5 Summary

Quizzes for Chapter 11

Part V. Learning: Chapter 12. Models in Machine Learning

12.1 Probabilistic Models

12.2 Geometric Models

12.3 Logical Models

12.4 Networked Models

12.5 Summary

Quizzes for Chapter 12


主站蜘蛛池模板: 精品久久人人做人人爽综合| 观看 亚洲欧美日韩综合在线一区| 日韩亚洲人成在线综合日本 | 色综合综合色综合色综合| 亚洲综合区小说区激情区| 色综合久久88色综合天天 | 色噜噜狠狠狠狠色综合久一| 综合精品欧美日韩国产在线| 成人综合激情| 欧美综合自拍亚洲综合图片区| 亚洲乱码中文字幕综合| 狠狠色狠狠色综合| 日韩欧美色综合网站| 久久综合九色综合网站| 国产亚洲综合成人91精品| 99久久国产综合精品女同图片| 日本道色综合久久影院| 色综合合久久天天综合绕视看| 色婷婷综合在线| 天天综合网网欲色| 情人伊人久久综合亚洲| 狠狠色综合网站久久久久久久高清 | 久久婷婷五月综合成人D啪| 激情综合色五月丁香六月亚洲| 亚洲国产免费综合| 国产91色综合久久免费| 欧美婷婷六月丁香综合色| 久久久久亚洲AV综合波多野结衣| 激情五月婷婷综合| 欧美综合图区亚欧综合图区| 色欲香天天天综合网站| 老色鬼久久亚洲AV综合| 91精品婷婷国产综合久久| 天天做天天爱天天爽天天综合| 亚洲av综合avav中文| 亚洲欧美综合一区二区三区| 久久综合九色综合网站| 女人和拘做受全程看视频日本综合a一区二区视频| 久久婷婷五月综合色奶水99啪| 综合久久久久久中文字幕亚洲国产国产综合一区首 | 久久综合色之久久综合|