課程目錄:Introduction to R with Time Series Analysis培訓
4401 人關注
(78637/99817)
課程大綱:

        Introduction to R with Time Series Analysis培訓

 

 

 

Introduction and preliminaries
Making R more friendly, R and available GUIs
Rstudio
Related software and documentation
R and statistics
Using R interactively
An introductory session
Getting help with functions and features
R commands, case sensitivity, etc.
Recall and correction of previous commands
Executing commands from or diverting output to a file
Data permanency and removing objects
Simple manipulations; numbers and vectors
Vectors and assignment
Vector arithmetic
Generating regular sequences
Logical vectors
Missing values
Character vectors
Index vectors; selecting and modifying subsets of a data set
Other types of objects
Objects, their modes and attributes
Intrinsic attributes: mode and length
Changing the length of an object
Getting and setting attributes
The class of an object
Arrays and matrices
Arrays
Array indexing. Subsections of an array
Index matrices
The array() function
The outer product of two arrays
Generalized transpose of an array
Matrix facilities
Matrix multiplication
Linear equations and inversion
Eigenvalues and eigenvectors
Singular value decomposition and determinants
Least squares fitting and the QR decomposition
Forming partitioned matrices, cbind() and rbind()
The concatenation function, (), with arrays
Frequency tables from factors
Lists and data frames
Lists
Constructing and modifying lists
Concatenating lists
Data frames
Making data frames
attach() and detach()
Working with data frames
Attaching arbitrary lists
Managing the search path
Data manipulation
Selecting, subsetting observations and variables
Filtering, grouping
Recoding, transformations
Aggregation, combining data sets
Character manipulation, stringr package
Reading data
Txt files
CSV files
XLS, XLSX files
SPSS, SAS, Stata,… and other formats data
Exporting data to txt, csv and other formats
Accessing data from databases using SQL language
Probability distributions
R as a set of statistical tables
Examining the distribution of a set of data
One- and two-sample tests
Grouping, loops and conditional execution
Grouped expressions
Control statements
Conditional execution: if statements
Repetitive execution: for loops, repeat and while
Writing your own functions
Simple examples
Defining new binary operators
Named arguments and defaults
The '...' argument
Assignments within functions
More advanced examples
Efficiency factors in block designs
Dropping all names in a printed array
Recursive numerical integration
Scope
Customizing the environment
Classes, generic functions and object orientation
Graphical procedures
High-level plotting commands
The plot() function
Displaying multivariate data
Display graphics
Arguments to high-level plotting functions
Basic visualisation graphs
Multivariate relations with lattice and ggplot package
Using graphics parameters
Graphics parameters list
Time series Forecasting
Seasonal adjustment
Moving average
Exponential smoothing
Extrapolation
Linear prediction
Trend estimation
Stationarity and ARIMA modelling
Econometric methods (casual methods)
Regression analysis
Multiple linear regression
Multiple non-linear regression
Regression validation
Forecasting from regression


主站蜘蛛池模板: 色欲久久久天天天综合网| 综合五月激情五月开心婷婷| 久久综合色区| 激情五月婷婷综合| 久久综合一区二区无码| 亚洲综合伊人久久大杳蕉| 欧美va亚洲va国产综合| 狠狠色丁香久久婷婷综合五月| 国产色综合天天综合网| 久久综合亚洲色HEZYO社区| 国产成人AV综合久久| 五月天婷五月天综合网在线| 久久狠狠色狠狠色综合| 伊人成年综合网| 色综合色综合色综合| 色综合久久久久久久久五月| 亚洲AV综合色区无码一区| 亚洲国产综合无码一区| 亚洲国产综合91精品麻豆| 久久综合伊人77777| 色欲香天天天综合网站| 三级韩国一区久久二区综合 | 婷婷久久综合九色综合九七| 亚洲综合精品香蕉久久网97| 国产成人亚洲综合| 亚洲欧美综合另类图片小说区 | 婷婷四房综合激情五月在线 | 亚洲欧美日韩综合二区三区 | 久久婷婷国产综合精品| 欧美激情综合亚洲一二区| 日日狠狠久久偷偷色综合96蜜桃| 久久婷婷五月综合国产尤物app| 天天色综合天天色| 热综合一本伊人久久精品| 久久综合一区二区无码| 亚洲欧美日韩综合在线观看不卡顿| 国产成人综合洲欧美在线| 久久综合成人网| 婷婷综合久久中文字幕| 久久婷婷五月综合成人D啪| 久久久久青草线蕉综合超碰|