課程目錄:Introduction to R with Time Series Analysis培訓(xùn)
4401 人關(guān)注
(78637/99817)
課程大綱:

        Introduction to R with Time Series Analysis培訓(xùn)

 

 

 

Introduction and preliminaries
Making R more friendly, R and available GUIs
Rstudio
Related software and documentation
R and statistics
Using R interactively
An introductory session
Getting help with functions and features
R commands, case sensitivity, etc.
Recall and correction of previous commands
Executing commands from or diverting output to a file
Data permanency and removing objects
Simple manipulations; numbers and vectors
Vectors and assignment
Vector arithmetic
Generating regular sequences
Logical vectors
Missing values
Character vectors
Index vectors; selecting and modifying subsets of a data set
Other types of objects
Objects, their modes and attributes
Intrinsic attributes: mode and length
Changing the length of an object
Getting and setting attributes
The class of an object
Arrays and matrices
Arrays
Array indexing. Subsections of an array
Index matrices
The array() function
The outer product of two arrays
Generalized transpose of an array
Matrix facilities
Matrix multiplication
Linear equations and inversion
Eigenvalues and eigenvectors
Singular value decomposition and determinants
Least squares fitting and the QR decomposition
Forming partitioned matrices, cbind() and rbind()
The concatenation function, (), with arrays
Frequency tables from factors
Lists and data frames
Lists
Constructing and modifying lists
Concatenating lists
Data frames
Making data frames
attach() and detach()
Working with data frames
Attaching arbitrary lists
Managing the search path
Data manipulation
Selecting, subsetting observations and variables
Filtering, grouping
Recoding, transformations
Aggregation, combining data sets
Character manipulation, stringr package
Reading data
Txt files
CSV files
XLS, XLSX files
SPSS, SAS, Stata,… and other formats data
Exporting data to txt, csv and other formats
Accessing data from databases using SQL language
Probability distributions
R as a set of statistical tables
Examining the distribution of a set of data
One- and two-sample tests
Grouping, loops and conditional execution
Grouped expressions
Control statements
Conditional execution: if statements
Repetitive execution: for loops, repeat and while
Writing your own functions
Simple examples
Defining new binary operators
Named arguments and defaults
The '...' argument
Assignments within functions
More advanced examples
Efficiency factors in block designs
Dropping all names in a printed array
Recursive numerical integration
Scope
Customizing the environment
Classes, generic functions and object orientation
Graphical procedures
High-level plotting commands
The plot() function
Displaying multivariate data
Display graphics
Arguments to high-level plotting functions
Basic visualisation graphs
Multivariate relations with lattice and ggplot package
Using graphics parameters
Graphics parameters list
Time series Forecasting
Seasonal adjustment
Moving average
Exponential smoothing
Extrapolation
Linear prediction
Trend estimation
Stationarity and ARIMA modelling
Econometric methods (casual methods)
Regression analysis
Multiple linear regression
Multiple non-linear regression
Regression validation
Forecasting from regression


主站蜘蛛池模板: 久久综合狠狠综合久久激情 | 国产综合精品女在线观看| 中文字幕亚洲综合久久| 涩涩色中文综合亚洲| 66精品综合久久久久久久| 婷婷色香五月综合激激情| 久久综合亚洲鲁鲁五月天| 久久久久AV综合网成人| 亚洲综合熟女久久久30p| 狠狠色丁香久久综合婷婷| 成人久久综合网| 天天干天天色综合| 婷婷国产天堂久久综合五月 | 久久综合亚洲色HEZYO国产| 久久综合久久综合九色| 狠狠亚洲婷婷综合色香五月排名| 亚洲 综合 欧美在线视频| 国产日韩欧美综合| 五月六月综合欧美网站| 色诱久久久久综合网ywww| 区二区三区激情综合| 久久天天日天天操综合伊人av| 亚洲国产天堂久久综合网站| 精品亚洲综合在线第一区| 色欲天天天综合网| 国产精品激情综合久久| 天天操天天干天天综合网| 狠狠激情五月综合婷婷俺| 亚洲欧美综合在线中文| 久久综合九色欧美综合狠狠| 亚洲av一综合av一区| 日韩欧美综合| 色狠狠成人综合色| 丁香五月缴情综合网| 国产综合成人久久大片91| 久久综合色老色| 伊人久久亚洲综合影院| 天天综合网网欲色| 欧美激情综合色综合啪啪五月| 亚洲欧美精品综合中文字幕| 欧美综合视频在线|