課程目錄:Machine Learning and Deep Learning培訓
4401 人關(guān)注
(78637/99817)
課程大綱:

         Machine Learning and Deep Learning培訓

 

 

 

Machine learning
Introduction to Machine Learning

Applications of machine learning
Supervised Versus Unsupervised Learning
Machine Learning Algorithms
Regression
Classification
Clustering
Recommender System
Anomaly Detection
Reinforcement Learning
Regression

Simple & Multiple Regression
Least Square Method
Estimating the Coefficients
Assessing the Accuracy of the Coefficient Estimates
Assessing the Accuracy of the Model
Post Estimation Analysis
Other Considerations in the Regression Models
Qualitative Predictors
Extensions of the Linear Models
Potential Problems
Bias-variance trade off [under-fitting/over-fitting] for regression models
Resampling Methods

Cross-Validation
The Validation Set Approach
Leave-One-Out Cross-Validation
k-Fold Cross-Validation
Bias-Variance Trade-Off for k-Fold
The Bootstrap
Model Selection and Regularization

Subset Selection [Best Subset Selection, Stepwise Selection, Choosing the Optimal Model]
Shrinkage Methods/ Regularization [Ridge Regression, Lasso & Elastic Net]
Selecting the Tuning Parameter
Dimension Reduction Methods
Principal Components Regression
Partial Least Squares
Classification

Logistic Regression

The Logistic Model cost function

Estimating the Coefficients

Making Predictions

Odds Ratio

Performance Evaluation Matrices

[Sensitivity/Specificity/PPV/NPV, Precision, ROC curve etc.]

Multiple Logistic Regression

Logistic Regression for >2 Response Classes

Regularized Logistic Regression

Linear Discriminant Analysis

Using Bayes’ Theorem for Classification

Linear Discriminant Analysis for p=1

Linear Discriminant Analysis for p >1

Quadratic Discriminant Analysis

K-Nearest Neighbors

Classification with Non-linear Decision Boundaries

Support Vector Machines

Optimization Objective

The Maximal Margin Classifier

Kernels

One-Versus-One Classification

One-Versus-All Classification

Comparison of Classification Methods

Introduction to Deep Learning
ANN Structure

Biological neurons and artificial neurons

Non-linear Hypothesis

Model Representation

Examples & Intuitions

Transfer Function/ Activation Functions

Typical classes of network architectures

Feed forward ANN.

Structures of Multi-layer feed forward networks

Back propagation algorithm

Back propagation - training and convergence

Functional approximation with back propagation

Practical and design issues of back propagation learning

Deep Learning

Artificial Intelligence & Deep Learning

Softmax Regression

Self-Taught Learning

Deep Networks

Demos and Applications

Lab:
Getting Started with R

Introduction to R

Basic Commands & Libraries

Data Manipulation

Importing & Exporting data

Graphical and Numerical Summaries

Writing functions

Regression

Simple & Multiple Linear Regression

Interaction Terms

Non-linear Transformations

Dummy variable regression

Cross-Validation and the Bootstrap

Subset selection methods

Penalization [Ridge, Lasso, Elastic Net]

Classification

Logistic Regression, LDA, QDA, and KNN,

Resampling & Regularization

Support Vector Machine

Resampling & Regularization

Note:

For ML algorithms, case studies will be used to discuss their application, advantages & potential issues.

Analysis of different data sets will be performed using R

主站蜘蛛池模板: 国产成人精品久久综合| 青青青国产色视频在线观看国产亚洲欧洲国产综合 | 久久狠狠色狠狠色综合| 亚洲精品天天影视综合网| 欧美综合图区亚洲综合图区| 久久综合狠狠综合久久| 欲香欲色天天综合和网| 国产成人综合久久精品红| 国产91色综合久久免费| 婷婷久久综合九色综合绿巨人 | 国产成人综合精品一区| 久久综合伊人77777麻豆| 狠狠色丁香婷婷久久综合| 日韩欧美综合在线| 亚洲AV综合色一区二区三区| 国产成人综合久久综合| 日韩欧美在线综合网另类| 小说区 图片区色 综合区| 久久久久综合中文字幕| 狠狠色婷婷综合天天久久丁香 | 国产综合欧美| 狠狠的干综合网| 日韩欧美国产综合在线播放| 亚洲国产成人久久综合碰碰动漫3d| 久久香综合精品久久伊人| 欧美日韩综合在线| 色综合久久久久久久久五月| 曰韩人妻无码一区二区三区综合部 | 狠狠色丁香婷婷综合久久来来去| 色综合欧美在线视频区| 色综合久久天天综合| 亚洲综合色成在线播放| 久久乐国产综合亚洲精品| 国产香蕉久久精品综合网| 亚洲激情综合网| 国产在线五月综合婷婷| 色欲天天婬色婬香视频综合网| 国产成+人+综合+欧美亚洲| 琪琪五月天综合婷婷| 一本大道久久a久久精品综合| 欧美成人综合视频|