課程目錄:Natural Language Processing - AI/Robotics培訓
4401 人關注
(78637/99817)
課程大綱:

        Natural Language Processing - AI/Robotics培訓

 

 

Detailed training outline

Introduction to NLP
Understanding NLP
NLP Frameworks
Commercial applications of NLP
Scraping data from the web
Working with various APIs to retrieve text data
Working and storing text corpora saving content and relevant metadata
Advantages of using Python and NLTK crash course
Practical Understanding of a Corpus and Dataset
Why do we need a corpus?
Corpus Analysis
Types of data attributes
Different file formats for corpora
Preparing a dataset for NLP applications
Understanding the Structure of a Sentences
Components of NLP
Natural language understanding
Morphological analysis - stem, word, token, speech tags
Syntactic analysis
Semantic analysis
Handling ambigiuty
Text data preprocessing
Corpus- raw text
Sentence tokenization
Stemming for raw text
Lemmization of raw text
Stop word removal
Corpus-raw sentences
Word tokenization
Word lemmatization
Working with Term-Document/Document-Term matrices
Text tokenization into n-grams and sentences
Practical and customized preprocessing
Analyzing Text data
Basic feature of NLP
Parsers and parsing
POS tagging and taggers
Name entity recognition
N-grams
Bag of words
Statistical features of NLP
Concepts of Linear algebra for NLP
Probabilistic theory for NLP
TF-IDF
Vectorization
Encoders and Decoders
Normalization
Probabilistic Models
Advanced feature engineering and NLP
Basics of word2vec
Components of word2vec model
Logic of the word2vec model
Extension of the word2vec concept
Application of word2vec model
Case study: Application of bag of words: automatic text summarization using simplified and true Luhn's algorithms
Document Clustering, Classification and Topic Modeling
Document clustering and pattern mining (hierarchical clustering, k-means, clustering, etc.)
Comparing and classifying documents using TFIDF, Jaccard and cosine distance measures
Document classifcication using Na?ve Bayes and Maximum Entropy
Identifying Important Text Elements
Reducing dimensionality: Principal Component Analysis, Singular Value Decomposition non-negative matrix factorization
Topic modeling and information retrieval using Latent Semantic Analysis
Entity Extraction, Sentiment Analysis and Advanced Topic Modeling
Positive vs. negative: degree of sentiment
Item Response Theory
Part of speech tagging and its application: finding people, places and organizations mentioned in text
Advanced topic modeling: Latent Dirichlet Allocation
Case studies
Mining unstructured user reviews
Sentiment classification and visualization of Product Review Data
Mining search logs for usage patterns
Text classification
Topic modelling

主站蜘蛛池模板: 色噜噜狠狠色综合日日| 久久国产综合精品五月天| 精品国产第一国产综合精品| 久久久久综合网久久| 婷婷综合缴情亚洲狠狠尤物| 色欲天天天综合网| 亚洲偷自拍拍综合网| 久久综合狠狠综合久久激情 | 桃花色综合影院| 天天干天天色综合| 色欲色香天天天综合网站| 色久综合网精品一区二区| 亚洲国产天堂久久综合网站| 国产成+人+综合+亚洲专| 日韩欧美国产综合| 亚洲欧美国产∧v精品综合网| 91探花国产综合在线精品| 亚洲精品第一国产综合境外资源| 国产亚洲精品精品国产亚洲综合| 国产综合亚洲专区在线| 婷婷色中文字幕综合在线| 久久亚洲综合色一区二区三区| 日韩欧美在线综合网另类| 热综合一本伊人久久精品| 曰韩人妻无码一区二区三区综合部| 亚洲狠狠爱综合影院婷婷 | 亚洲伊人久久大香线蕉综合图片| 五月天综合色激情| 色综合伊人色综合网站| 三级韩国一区久久二区综合| 狠狠做五月深爱婷婷天天综合 | 一本久道久久综合狠狠躁AV| 一本久久综合亚洲鲁鲁五月天亚洲欧美一区二区 | 天天综合网天天综合色| 亚洲综合图色40p| 91精品国产91久久综合| 国产成+人+综合+亚洲专| 国产精品亚洲综合一区| 久久久久久久综合综合狠狠| 国产欧美日韩综合精品一区二区三区 | 一本色道久久综合狠狠躁|