課程目錄:TensorFlow Lite for iOS培訓(xùn)
4401 人關(guān)注
(78637/99817)
課程大綱:

         TensorFlow Lite for iOS培訓(xùn)

 

 

 

 

Introduction

Tensorflow vs Tensorflow Lite
Overview of TensorFlow Lite Features and Workflow

Recap of machine learning and deep learning concepts
How on-device low-latency inference is achieved
End-to-end model building and deployment
Preparing the Development Environment

Starting a Swift project
Adding TensorFlow to the project
Capturing an Image with a Device Camera

How camera input is captured
Overview of classes and methods
Running inference on a frame (performing image classification)
Creating an App for Object Detection

Selecting a TensorFlow Model
Converting the TensorFlow Model
Loading the TensorFlow Model onto a Mobile Device
Loading a Pre-trained TensorFlow Model
Creating an App for Image Classification

Selecting a TensorFlow Model
Converting the TensorFlow Model
Loading the TensorFlow Model onto a Mobile Device
Loading a Pre-trained TensorFlow Model
Customizing the Model and Data

Pre-processing a dataset
Setting the hyperparameters
Optimizing the TensorFlow Model

Measuring performance against a benchmark
Measuring accuracy
Retraining a TensorFlow model
Exploring Alternative Models

Choosing a different model
Training a model to recognize new classes (transfer learning)
Obtaining training images for new labels
Deploying the AI Enabled iOS App

Performing image classification in the field
Troubleshooting

Summary and Conclusion

主站蜘蛛池模板: 综合久久国产九一剧情麻豆| 伊人成年综合网| 伊人久久综合成人网| 一本色道久久88综合日韩精品| 区三区激情福利综合中文字幕在线一区亚洲视频1 | 中文网丁香综合网| 伊人色综合久久天天网| 一本久久综合亚洲鲁鲁五月天| 亚洲av综合av一区| 小说区 图片区色 综合区| 97se色综合一区二区二区| 美国十次狠狠色综合| 99久久国产综合精品网成人影院| 亚洲国产综合精品一区在线播放| 久久91综合国产91久久精品| 国产成人亚洲综合| 国产成人综合一区精品| 久久综合久久自在自线精品自| 久久综合视频网站| 婷婷国产天堂久久综合五月| 亚洲av综合av一区| 婷婷综合久久狠狠色99h| 99久久国产综合精品成人影院| 色天使久久综合网天天| 色欲久久久天天天综合网精品| 激情综合色五月六月婷婷| 久久综合亚洲色HEZYO社区 | 亚洲国产精品综合久久一线| 狠狠色综合日日| 欧美综合自拍亚洲综合图| 欧美成人综合视频| 精品国产综合区久久久久久| 色综合久久中文字幕无码| 亚洲综合熟女久久久30p| 亚洲国产国产综合一区首页| 亚洲av一综合av一区| 九九久久99综合一区二区| 久久综合狠狠综合久久97色| 国产精品亚洲综合专区片高清久久久| 综合在线视频精品专区| 久久久久AV综合网成人|