課程目錄:Deep Learning AI Techniques for Executives, Developers and Managers培訓
4401 人關注
(78637/99817)
課程大綱:

          Deep Learning AI Techniques for Executives, Developers and Managers培訓

 

 

 

Day-1:
Basic Machine Learning
Module-1
Introduction:

Exercise – Installing Python and NN Libraries
Why machine learning?
Brief history of machine learning
The rise of deep learning
Basic concepts in machine learning
Visualizing a classification problem
Decision boundaries and decision regions
iPython notebooks
Module-2
Exercise – Decision Regions
The artificial neuron
The neural network, forward propagation and network layers
Activation functions
Exercise – Activation Functions
Backpropagation of error
Underfitting and overfitting
Interpolation and smoothing
Extrapolation and data abstraction
Generalization in machine learning
Module-3
Exercise – Underfitting and Overfitting
Training, testing, and validation sets
Data bias and the negative example problem
Bias/variance tradeoff
Exercise – Datasets and Bias
Module-4
Overview of NN parameters and hyperparameters
Logistic regression problems
Cost functions
Example – Regression
Classical machine learning vs. deep learning
Conclusion
Day-2 : Convolutional Neural Networks (CNN)
Module-5
Introduction to CNN
What are CNNs?
Computer vision
CNNs in everyday life
Images – pixels, quantization of color & space, RGB
Convolution equations and physical meaning, continuous vs. discrete
Exercise – 1D Convolution
Module-6
Theoretical basis for filtering
Signal as sum of sinusoids
Frequency spectrum
Bandpass filters
Exercise – Frequency Filtering
2D convolutional filters
Padding and stride length
Filter as bandpass
Filter as template matching
Exercise – Edge Detection
Gabor filters for localized frequency analysis
Exercise – Gabor Filters as Layer 1 Maps
Module-7
CNN architecture
Convolutional layers
Max pooling layers
Downsampling layers
Recursive data abstraction
Example of recursive abstraction
Module-8
Exercise – Basic CNN Usage
ImageNet dataset and the VGG-16 model
Visualization of feature maps
Visualization of feature meanings
Exercise – Feature Maps and Feature Meanings
Day-3 : Sequence Model
Module-9
What are sequence models?
Why sequence models?
Language modeling use case
Sequences in time vs. sequences in space
Module-10
RNNs
Recurrent architecture
Backpropagation through time
Vanishing gradients
GRU
LSTM
Deep RNN
Bidirectional RNN
Exercise – Unidirectional vs. Bidirectional RNN
Sampling sequences
Sequence output prediction
Exercise – Sequence Output Prediction
RNNs on simple time varying signals
Exercise – Basic Waveform Detection
Module-11
Natural Language Processing (NLP)
Word embeddings
Word vectors: word2vec
Word vectors: GloVe
Knowledge transfer and word embeddings
Sentiment analysis
Exercise – Sentiment Analysis
Module-12
Quantifying and removing bias
Exercise – Removing Bias
Audio data
Beam search
Attention model
Speech recognition
Trigger word Detection
Exercise – Speech Recognition

主站蜘蛛池模板: 一本色道久久88加勒比—综合| 国产成人麻豆亚洲综合无码精品| 天天av天天翘天天综合网| 一本色道久久88精品综合| 九九久久99综合一区二区| 国产欧美精品一区二区色综合| 国产激情电影综合在线看 | 国产成人麻豆亚洲综合无码精品| 激情综合婷婷色五月蜜桃| 伊人久久综合无码成人网| 亚洲婷婷五月综合狠狠爱| 色天使久久综合网天天| 色综合婷婷在线| 夜鲁鲁鲁夜夜综合视频欧美| 日韩亚洲国产综合久久久| 色综合天天综合给合国产| 狠狠做深爱婷婷综合一区| 激情五月综合网| 亚洲人成依人成综合网| 婷婷激情综合网| 国产福利电影一区二区三区久久久久成人精品综合 | 台湾佬综合娱乐| 亚洲综合色区在线观看| 久久久久一级精品亚洲国产成人综合AV区| 久久综合给合久久狠狠狠97色| 欧美自拍另类欧美综合图片区 | 国产欧美日韩综合一区在线播放 | 色噜噜狠狠狠狠色综合久一| 欧美综合缴情五月丁香六月婷| 国产成人综合美国十次| 久久婷婷午色综合夜啪| 一本色综合久久| 色噜噜狠狠狠综合曰曰曰| 久久综合成人网| 国产综合色香蕉精品五月婷| 国产成人综合久久精品尤物| 色久悠悠婷婷综合在线亚洲| 少妇熟女久久综合网色欲| 中文字幕亚洲综合精品一区| 精品国产综合区久久久久久| 青青草原综合久久大伊人|