課程目錄:Deep Learning AI Techniques for Executives, Developers and Managers培訓
4401 人關注
(78637/99817)
課程大綱:

          Deep Learning AI Techniques for Executives, Developers and Managers培訓

 

 

 

Day-1:
Basic Machine Learning
Module-1
Introduction:

Exercise – Installing Python and NN Libraries
Why machine learning?
Brief history of machine learning
The rise of deep learning
Basic concepts in machine learning
Visualizing a classification problem
Decision boundaries and decision regions
iPython notebooks
Module-2
Exercise – Decision Regions
The artificial neuron
The neural network, forward propagation and network layers
Activation functions
Exercise – Activation Functions
Backpropagation of error
Underfitting and overfitting
Interpolation and smoothing
Extrapolation and data abstraction
Generalization in machine learning
Module-3
Exercise – Underfitting and Overfitting
Training, testing, and validation sets
Data bias and the negative example problem
Bias/variance tradeoff
Exercise – Datasets and Bias
Module-4
Overview of NN parameters and hyperparameters
Logistic regression problems
Cost functions
Example – Regression
Classical machine learning vs. deep learning
Conclusion
Day-2 : Convolutional Neural Networks (CNN)
Module-5
Introduction to CNN
What are CNNs?
Computer vision
CNNs in everyday life
Images – pixels, quantization of color & space, RGB
Convolution equations and physical meaning, continuous vs. discrete
Exercise – 1D Convolution
Module-6
Theoretical basis for filtering
Signal as sum of sinusoids
Frequency spectrum
Bandpass filters
Exercise – Frequency Filtering
2D convolutional filters
Padding and stride length
Filter as bandpass
Filter as template matching
Exercise – Edge Detection
Gabor filters for localized frequency analysis
Exercise – Gabor Filters as Layer 1 Maps
Module-7
CNN architecture
Convolutional layers
Max pooling layers
Downsampling layers
Recursive data abstraction
Example of recursive abstraction
Module-8
Exercise – Basic CNN Usage
ImageNet dataset and the VGG-16 model
Visualization of feature maps
Visualization of feature meanings
Exercise – Feature Maps and Feature Meanings
Day-3 : Sequence Model
Module-9
What are sequence models?
Why sequence models?
Language modeling use case
Sequences in time vs. sequences in space
Module-10
RNNs
Recurrent architecture
Backpropagation through time
Vanishing gradients
GRU
LSTM
Deep RNN
Bidirectional RNN
Exercise – Unidirectional vs. Bidirectional RNN
Sampling sequences
Sequence output prediction
Exercise – Sequence Output Prediction
RNNs on simple time varying signals
Exercise – Basic Waveform Detection
Module-11
Natural Language Processing (NLP)
Word embeddings
Word vectors: word2vec
Word vectors: GloVe
Knowledge transfer and word embeddings
Sentiment analysis
Exercise – Sentiment Analysis
Module-12
Quantifying and removing bias
Exercise – Removing Bias
Audio data
Beam search
Attention model
Speech recognition
Trigger word Detection
Exercise – Speech Recognition

主站蜘蛛池模板: 亚洲国产欧洲综合997久久| 色噜噜狠狠色综合网| 国产精品综合久成人| 亚洲色偷偷狠狠综合网| 狠狠的干综合网| 天天色天天综合| 国产成人综合亚洲AV第一页 | 2020久久精品亚洲热综合一本| 亚洲偷自拍拍综合网| 天天综合天天看夜夜添狠狠玩| 激情综合色五月丁香六月欧美| 色噜噜狠狠色综合久| 综合在线免费视频| 伊人久久综合成人网| 久久综合色老色| 欧美激情综合亚洲一二区| 久久综合九色综合欧美狠狠| 国产精品国色综合久久| 综合国产精品第一页| 欧美va亚洲va国产综合| 激情97综合亚洲色婷婷五| 伊人久久综合热线大杳蕉下载| 国产成人人综合亚洲欧美丁香花| 欧美日韩综合精品| 激情五月激情综合网| 人人妻人人狠人人爽天天综合网| 狠狠色综合网站久久久久久久| 亚洲国产精品成人AV无码久久综合影院| 久久综合亚洲色HEZYO社区| 97久久综合精品久久久综合| 一本色道久久99一综合| 婷婷丁香五月激情综合| 狠狠色婷婷久久综合频道日韩| 伊人色综合久久| 亚洲狠狠婷婷综合久久蜜芽| 久久午夜综合久久| 熟天天做天天爱天天爽综合网| 色欲综合久久躁天天躁| 亚洲AV综合色一区二区三区| 欧美日韩国产综合草草| 亚洲伊人成无码综合网 |