課程目錄:Artificial Neural Networks, Machine Learning, Deep Thinking培訓
4401 人關注
(78637/99817)
課程大綱:

          Artificial Neural Networks, Machine Learning, Deep Thinking培訓

 

 

 

DAY 1 - ARTIFICIAL NEURAL NETWORKS
Introduction and ANN Structure.
Biological neurons and artificial neurons.
Model of an ANN.
Activation functions used in ANNs.
Typical classes of network architectures .
Mathematical Foundations and Learning mechanisms.
Re-visiting vector and matrix algebra.
State-space concepts.
Concepts of optimization.
Error-correction learning.
Memory-based learning.
Hebbian learning.
Competitive learning.
Single layer perceptrons.
Structure and learning of perceptrons.
Pattern classifier - introduction and Bayes' classifiers.
Perceptron as a pattern classifier.
Perceptron convergence.
Limitations of a perceptrons.
Feedforward ANN.
Structures of Multi-layer feedforward networks.
Back propagation algorithm.
Back propagation - training and convergence.
Functional approximation with back propagation.
Practical and design issues of back propagation learning.
Radial Basis Function Networks.
Pattern separability and interpolation.
Regularization Theory.
Regularization and RBF networks.
RBF network design and training.
Approximation properties of RBF.
Competitive Learning and Self organizing ANN.
General clustering procedures.
Learning Vector Quantization (LVQ).
Competitive learning algorithms and architectures.
Self organizing feature maps.
Properties of feature maps.
Fuzzy Neural Networks.
Neuro-fuzzy systems.
Background of fuzzy sets and logic.
Design of fuzzy stems.
Design of fuzzy ANNs.
Applications
A few examples of Neural Network applications, their advantages and problems will be discussed.
DAY -2 MACHINE LEARNING
The PAC Learning Framework
Guarantees for finite hypothesis set – consistent case
Guarantees for finite hypothesis set – inconsistent case
Generalities
Deterministic cv. Stochastic scenarios
Bayes error noise
Estimation and approximation errors
Model selection
Radmeacher Complexity and VC – Dimension
Bias - Variance tradeoff
Regularisation
Over-fitting
Validation
Support Vector Machines
Kriging (Gaussian Process regression)
PCA and Kernel PCA
Self Organisation Maps (SOM)
Kernel induced vector space
Mercer Kernels and Kernel - induced similarity metrics
Reinforcement Learning
DAY 3 - DEEP LEARNING
This will be taught in relation to the topics covered on Day 1 and Day 2
Logistic and Softmax Regression
Sparse Autoencoders
Vectorization, PCA and Whitening
Self-Taught Learning
Deep Networks
Linear Decoders
Convolution and Pooling
Sparse Coding
Independent Component Analysis
Canonical Correlation Analysis
Demos and Applications

主站蜘蛛池模板: 国产成人综合网在线观看| 色综合天天综合网国产国产人 | 一本久久综合亚洲鲁鲁五月天亚洲欧美一区二区 | 亚洲伊人久久综合中文成人网| 久久久久久久综合日本| 久久99国产综合精品免费| 天天影视色香欲综合久久| 久久综合视频网| 久久综合鬼色88久久精品综合自在自线噜噜| 天堂无码久久综合东京热| 成人综合久久精品色婷婷| 久久精品综合一区二区三区| 亚洲va欧美va天堂v国产综合| 亚洲综合在线另类色区奇米| 色综合.com| 亚洲综合一区二区精品导航| 久久婷婷五月综合97色直播| 综合久久一区二区三区| 亚洲国产欧美国产综合一区| 亚洲国产综合精品一区在线播放| 7国产欧美日韩综合天堂中文久久久久 | 中文自拍日本综合| 青青草原综合久久大伊人| 97久久天天综合色天天综合色hd| 国产综合在线观看| 亚洲色欲色欲综合网站| 久久久久综合网久久| 日本道色综合久久影院| 激情综合亚洲色婷婷五月| 日日AV色欲香天天综合网| 成人综合伊人五月婷久久| 欧美亚洲日韩国产综合网| 色综合久久中文字幕综合网| 亚洲综合在线另类色区奇米| 开心五月激情综合婷婷| 久久狠狠一本精品综合网| 激情综合色五月丁香六月欧美 | 亚洲色婷婷综合开心网| 国产激情综合在线观看| 免费精品99久久国产综合精品 | 色青青草原桃花久久综合|