課程目錄:Artificial Neural Networks, Machine Learning, Deep Thinking培訓
4401 人關注
(78637/99817)
課程大綱:

          Artificial Neural Networks, Machine Learning, Deep Thinking培訓

 

 

 

DAY 1 - ARTIFICIAL NEURAL NETWORKS
Introduction and ANN Structure.
Biological neurons and artificial neurons.
Model of an ANN.
Activation functions used in ANNs.
Typical classes of network architectures .
Mathematical Foundations and Learning mechanisms.
Re-visiting vector and matrix algebra.
State-space concepts.
Concepts of optimization.
Error-correction learning.
Memory-based learning.
Hebbian learning.
Competitive learning.
Single layer perceptrons.
Structure and learning of perceptrons.
Pattern classifier - introduction and Bayes' classifiers.
Perceptron as a pattern classifier.
Perceptron convergence.
Limitations of a perceptrons.
Feedforward ANN.
Structures of Multi-layer feedforward networks.
Back propagation algorithm.
Back propagation - training and convergence.
Functional approximation with back propagation.
Practical and design issues of back propagation learning.
Radial Basis Function Networks.
Pattern separability and interpolation.
Regularization Theory.
Regularization and RBF networks.
RBF network design and training.
Approximation properties of RBF.
Competitive Learning and Self organizing ANN.
General clustering procedures.
Learning Vector Quantization (LVQ).
Competitive learning algorithms and architectures.
Self organizing feature maps.
Properties of feature maps.
Fuzzy Neural Networks.
Neuro-fuzzy systems.
Background of fuzzy sets and logic.
Design of fuzzy stems.
Design of fuzzy ANNs.
Applications
A few examples of Neural Network applications, their advantages and problems will be discussed.
DAY -2 MACHINE LEARNING
The PAC Learning Framework
Guarantees for finite hypothesis set – consistent case
Guarantees for finite hypothesis set – inconsistent case
Generalities
Deterministic cv. Stochastic scenarios
Bayes error noise
Estimation and approximation errors
Model selection
Radmeacher Complexity and VC – Dimension
Bias - Variance tradeoff
Regularisation
Over-fitting
Validation
Support Vector Machines
Kriging (Gaussian Process regression)
PCA and Kernel PCA
Self Organisation Maps (SOM)
Kernel induced vector space
Mercer Kernels and Kernel - induced similarity metrics
Reinforcement Learning
DAY 3 - DEEP LEARNING
This will be taught in relation to the topics covered on Day 1 and Day 2
Logistic and Softmax Regression
Sparse Autoencoders
Vectorization, PCA and Whitening
Self-Taught Learning
Deep Networks
Linear Decoders
Convolution and Pooling
Sparse Coding
Independent Component Analysis
Canonical Correlation Analysis
Demos and Applications

主站蜘蛛池模板: 色综合久久最新中文字幕| 欧美激情综合网| 久久久久高潮综合影院| 婷婷综合久久狠狠色99h| 天天av天天翘天天综合网| 天堂久久天堂AV色综合| 亚洲色偷偷综合亚洲AVYP| 91精品国产综合久久精品| 久久综合狠狠综合久久激情 | 国产在线一区二区综合免费视频| 色综合天天综合中文网| 狠狠色婷婷久久综合频道日韩| 久久久久AV综合网成人| 一本色道久久88综合日韩精品| 国产成人亚洲综合网站不卡| 国产综合精品久久亚洲 | 亚洲色欧美色国产综合色| 狠狠色狠狠色综合系列| 一本久久a久久精品综合夜夜 | 国产欧美日韩综合精品一区二区| 东京热TOKYO综合久久精品| 18和谐综合色区| 亚洲国产免费综合| 亚洲国产综合无码一区二区二三区| 激情综合色五月丁香六月欧美| 狠狠色噜噜狠狠狠狠色综合久 | 丁香五月综合久久激情| 欧美在线观看综合国产| 中文字幕乱码人妻综合二区三区| 久久久综合香蕉尹人综合网| 色综合久久天天综线观看| 国产91久久综合| 婷婷色中文字幕综合在线| 激情五月综合网| 色99久久久久高潮综合影院| 99综合电影在线视频好看| 亚洲第一综合色| 亚洲伊人久久成综合人影院| 激情五月综合综合久久69| 五月丁香综合激情六月久久| 色狠狠成人综合色|